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The settling of a Brownian particle in a semi-infinite fluid bounded by a bottom
plane is studied on the basis of Smoluchowski’s exact solution of the equation
describing diffusion in the gravitational potential. Expressions are derived for
the mean height and the variance of height at some time after starting at an
initial height. These quantities show interesting behavior as a function of time.
It is shown that for certain initial heights the Boltzmann entropy does not
increase steadily. It increases at first but then decreases to its equilibrium value.
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1. INTRODUCTION

The settling of a Brownian particle in a semi-infinite fluid bounded by a
horizontal bottom plane provides an illuminating application of the theory
of stochastic processes. The problem was studied by Smoluchowski, (1) who
gave an exact solution of the equation describing diffusion in a gravitatio-
nal potential. He derived an expression for the conditional probability of
finding the particle at a certain height after starting at a different height at
an earlier time. The problem was studied independently by Mason and
Weaver, (2) who solved the same equation for some special initial density
profiles. Smoluchowski’s solution was discussed by Chandrasekhar (3) in his
well-known review, but he did not add to Smoluchowski’s work. A wealth
of information is hidden in the complex fundamental solution found by
Smoluchowski. In the following we discuss some of its striking features.



In particular we study the mean height and its variance as a function
of time. Smoluchowski (1) took the mean height to be a measure of the
entropy. In particular he considered a particle starting at the bottom, and
achieving a mean equilibrium height after a long time. Since the latter is
above the starting-point he argued that this implies a decrease of entropy,
though adding that this does not allow the construction of a perpetuum
mobile. Smoluchowski’s view was repeated by Chandrasekhar. (3, 4) Actually
we shall see that for the situation considered the entropy, properly defined
à la Boltzmann, steadily increases. On the other hand there are other
situations for which the entropy first increases, and then decreases to its
equilibrium value. We also study the probability to be above the mean
height after starting out at some initial height, and find curious behavior.
The probability distribution of the time of first hitting the bottom

after release from a specified height is given by a rather simple expres-
sion (5, 6) and will not be discussed further. It is worth noting that the first-
passage-time density, as well as the mean recurrence time, has also been
calculated on the basis of the Fokker-Planck equation describing the
diffusion and drift in velocity space. (7)

A solution similar to that of Smoluchowski has been found for
Lamm’s equation, which describes centrifugal sedimentation. (8) This solu-
tion should imply features similar to those found here for the gravitational
case.

2. ORIENTATIONAL TIME-CORRELATION FUNCTIONS

We consider a Brownian particle of mass m, diffusion coefficient D,
located in the half-space z > 0 and in the presence of a gravitational poten-
tial f(r)=mgz. The particle is reflected at the bottom plane z=0. The
diffusion in horizontal directions is identical to that of a free particle, and
can be omitted from consideration. Integrating over horizontal coordinates
we find that the conditional probability distribution P(z | z0, t) for the
vertical coordinate z for time t > 0 satisfies the Smoluchowski equation

“P
“t
=D 5“

2P
“z2
+
mg
kT
“P
“z
6 (2.1)

with initial condition P(z | z0, 0)=d(z−z0). The explicit solution was given
by Smoluchowski. (1) In dimensionless form Eq. (2.1) reads

“P
“t
=
“
2P
“z2
+
“P
“z
. (2.2)
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From the solution of this equation one can reconstruct the solution of
Eq. (2.1) by replacing z by oz with o=`kT/mg and t by Do2t. For brevity
of notation we indicate the initial coordinate by y rather than z0. The
reflection at z=0 implies the boundary condition

“P(z | y, t)
“z
:
z=0
+P(0 | y, t)=0. (2.3)

Smoluchowski’s solution reads

P(z | y, t)=
1

2`pt
5exp 5−(z−y)

2

4t
6+exp 5−(z+y)

2

4t
66 exp 5−z−y

2
−
t
4
6

+
1
2
e−z erfc 5z+y−t

2`t
6 . (2.4)

The solution reduces to P(z | y, 0+)=d(z−y) at short times, and tends to
the equilibrium distribution

Peq(z)=exp(−z) (2.5)

as t tends to infinity. The solution is to be compared with that valid in the
absence of the bottom wall,

P0(z | y, t)=
1

2`pt
exp 5−(z−y+t)

2

4t
6 (2.6)

holding for all y, z. This does not tend to an equilibrium solution as tQ..
In order to obtain the solution Eq. (2.4) Smoluchowski transformed

the Eq. (2.2) to the free diffusion equation for k(z | y, t)=exp (12 z+
1
4 t)

P(z | y, t). This is a special case of a more general tranformation of the
Smoluchowski equation to a Schrödinger equation with imaginary time. (9)

The diffusion equation in the presence of a wall can be solved by the
method of images. (10, 11) The second term in Eq. (2.4) clearly corresponds to
the image −y of the first term with source at y. The last term can be
expressed as

1
2
e−z erfc 5z+y−t

2`t
6= 1

2`pt
F
.

y
exp 5−(z+g)

2

4t
−
z−g
2
−
t
4
6 dg (2.7)
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corresponding to a continuous distribution of sources from −. to −y
along the negative z-axis.
The solution satisfies the symmetry relation

P(z | y, t) Peq(y)=P(y | z, t) Peq(z). (2.8)

In particular it follows from Eq. (2.8) that the average of any quantity G(z)

g(y, t)=F
.

0
G(z) P(z | y, t) dz (2.9)

satisfies the adjoint equation

“g
“t
=
“
2g
“y2
−
“g
“y

(2.10)

with initial condition g(y, 0)=G(y) and boundary condition

“g
“y
:
y=0
=0. (2.11)

It was shown graphically by Smoluchowski (1) that the approach of the
probability P(z | y, t) to its equilibrium value exp(−z) need not be mono-
tonic. In Fig. 1 we plot P(1 | y, t) as a function of time for the three initial
values y=1.8, 1.9, and 2.0. This shows that for the first two cases the
probability even oscillates about the final equilibrium value 1/e. In the
following we study some curious features of the approach to equilibrium in
more detail.

0 1 2 3 4 5 6

0.34

0.36

0.38

0.4

0.42

t

P(1| y, t)

Fig. 1. Probability P(1 | y, t) to be at the mean equilibrium height 1 at time t after starting
at initial height y at time t=0 for y=1.8, y=1.9, and y=2.0 (top to bottom).
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3. MEAN HEIGHT AND VARIANCE OF HEIGHT

The mean height of the Brownian particle, starting to diffuse at height
y at time t=0,

M(y, t)=F
.

0
zP(z | y, t) dz (3.1)

follows straightforwardly from the probability distribution Eq. (2.4). It is
given by

M(y, t)=y−t+
1
2
(1−y+t) erfc 1y−t

`4t
2

−
1
2
ey erfc 1y+t

`4t
2+= t

p
exp 5−(y−t)

2

4t
6 . (3.2)

For yQ. at fixed t this tends to the result M0(y, t)=y−t found from
Eq. (2.6) in the absence of the wall. For tQ. at fixed y the average
M(y, t) tends to the equilibrium value Meq(y)=1. It can be checked that
M(y, t) satisfies Eq. (2.10) with boundary condition (2.11).
The behavior in time is not monotonic. At short times the average

decreases as y−t for any y. This shows that even for y < 1 the average first
decreases before it starts to increase. For y=1 the decrease is substantial.
The minimum M(1, tmin)=0.8245 is attained at tmin=0.4676. By continu-
ity, for any y > 1 the average shows a minimum below 1 before it increases.
For y=1.75 the minimum is 0.9997 and is attained at tmin=9.8840. In
Fig. 2we show the averageM(y, t) for the initial valuesy=0.5, 0.75, 1.0, 1.25,
1.5, and 1.75.
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Fig. 2. Mean height M(y, t) as a function of time t for initial values y=0.5, y=0.75,
y=1.0, y=1.25, y=1.5, and y=1.75 (bottom to top).
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Of course, the fluctuations can be large. For large positive y and for
t° y the solution (2.4) is approximated well by the solution (2.6) for
absent wall. For the latter solution the variance of the height grows pro-
portionately with time. On the other hand, for large times the distribution
tends to equilibrium, so that the variance must tend to unity. The average
of the squared height

Q(y, t)=F
.

0
z2 P(z | y, t) dz (3.3)

is found to be given by

Q(y, t)=(y−t)2+2t+51−t−1
2
(y−t)26 erfc 1 y−t

2`t
2

+(y+t−1) ey erfc 1 y+t
2`t
2+(y−t−2)= t

p
exp 5−(y−t)

2

4t
6 .
(3.4)

For short times Q(y, 0+)=y2, and for long times Q(y, t) tends to the
equilibrium value Qeq=2. It can be checked that Q(y, t) satisfies Eq. (2.10)
with boundary condition (2.11). In Fig. 3 we plot the variance

D(y, t)=Q(y, t)−M2(y, t) (3.5)

as a function of time for y=0.5, 1.0, 1.5, 2.0, and 3.0. From the last curve
it is evident that for y± 1 the presence of the bottom wall is noticeable
long before t=y.
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Fig. 3. Variance D(y, t) as a function of time t for initial values y=0.5, y=1.0, y=1.5,
y=2.0, and y=3.0 (bottom to top).
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4. PROBABILITY TO BE ABOVE AVERAGE

As shown in Fig. 1, for certain initial values y above average, the
probability to be at the average height tends to its equilibrium value 1/e
nonmonotonically. This suggests that the same may be true for the proba-
bility to be above average. In this section we investigate the probability

A(y, t)=F
.

1
P(z | y, t) dz. (4.1)

At the initial time this is a step-function

A(y, 0)=h(y−1). (4.2)

At long times A(y, t) tends to 1/e independent of y.
Substituting Eq. (2.4) into (4.1) we find that the first two terms can be

integrated easily. One calculates the integral of the last term conveniently
by first taking a partial derivative with respect to y. The result can be
integrated over z, and subsequently the result of this can be integrated
over y. The value at the boundary y=0 can be found easily by integration
by parts. Thus we find the probability

A(y, t)=
1
2
erfc 11−y+t

2`t
2+1
2e
erfc 11+y−t

2`t
2 . (4.3)

This clearly has the initial value given by Eq. (4.2) and the limiting value
1/e. It can be checked that the function satisfies Eq. (2.10) with boundary
value (2.11).
At y=1+ the probability A(1, t) decays below the final value 1/e=

0.3679. Thus, even when starting just above the mean equilibrium height,
the probability to be above average rapidly decreases to a minimum value
0.3266 at time t=0.7959 before attaining the final value 1/e. In Fig. 4 we
plot A(1+, t)−1/e as a function of time.
It is also of interest to consider the time-evolution of the probability

distribution when starting with an equilibrium distribution above the mean
equilibrium height. This distribution is given by

B(z, t)=e F
.

1
e−y P(z | y, t) dy. (4.4)

By the symmetry Eq. (2.8) this is given by

B(z, t)=e1−z F
.

1
P(y | z, t) dy, (4.5)
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Fig. 4. Plot of A(1+, t)−1/e as a function of time, where A(y, t) is the probability to be
above average 1 at time t, when starting from height y at time 0, and 1/e is the limiting equi-
librium value.

so that

B(z, t)=e1−zA(z, t). (4.6)

The behavior as a function of time at z=1 follows from Fig. 4. In Fig. 5
we plot the distribution B(z, t) as a function of z for times t=0.1, 0.5,
and 1.0.

5. DECREASE OF ENTROPY

In this section we discuss a dilute system of many Brownian particles.
For such a system one can define a non-equilibrium entropy and free
energy. We discuss the behavior of these thermodynamic quantities as
a function of time. The non-equilibrium entropy per particle, when all
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Fig. 5. Probability distribution B(z, t), defined in Eq. (4.4), as a function of height z at times
t=0.1 (solid curve), t=0.5 (dashed curve), t=1.0 (dotted curve).
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particles start to diffuse from height y at time t=0, is according to Boltzmann
in dimensionless units

S(y, t)=−F
.

0
P(z | y, t) ln P(z | y, t) dz. (5.1)

The corresponding free energy is

F(y, t)=M(y, t)−S(y, t). (5.2)

It can be expressed as

F(y, t)=F
.

0
P(z | y, t) ln

P(z | y, t)
Peq(z)

dz. (5.3)

It follows from the H-theorem for the Smoluchowski equation (12) that this
is a monotonically decreasing function of time. The initial value F(y, 0+)
is infinite, and the final equilibrium value vanishes. The average M(y, t)
can both increase and decrease. We have shown in Section 3 that for y \ 1
the function first decreases, and then increases. It is natural to ask for the
behavior of the non-equilibrium entropy S(y, t).
The initial value of the entropy S(y, 0+) is minus infinity. Its final

equilibrium value is unity, independent of y. However, it is clear that for
sufficiently large y the entropy does not increase monotonically. As long as
the influence of the wall is negligibly small the entropy increases. It can
attain large positive values, but as soon as the presence of the wall is felt
the entropy decreases to unity. The decrease corresponds to narrowing of
the distribution function, as shown in Fig. 3. In Fig. 6 we plot the behavior
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Fig. 6. Plot of free energy F(y, t) (dotted curve), mean height M(y, t) (dashed curve), and
entropy S(y, t) (solid curve) as a function of time t for initial height y=0.
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Fig. 7. Same as in Fig. 6 for initial height y=3.

of free energy F(y, t), potential energyM(y, t), and entropy S(y, t) for the
initial value y=0. In this case both M and S increase monotonically. In
Fig. 7 we plot the behavior of these functions for initial value y=3. The
function S(3, t) shows a maximum.
The discussion of Smoluchowski(1) and Chandrasekhar(3, 4) of the behav-

ior of the entropy is incorrect. They identified −M(y, t) with the entropy.
As discussed above, −M can both increase and decrease. The free energy
F(y, t) decreases monotonically. The difference of potential energy y−1 is
transferred to the heat bath. The entropy of the system of Brownian par-
ticles is a measure of its geometrical disorder. The gravitational potential
and the bottom wall have an ordering effect.

6. DISCUSSION

We have shown that the settling of a Brownian particle in bounded
plane geometry exhibits interesting features. Smoluchowski’s exact solution
for the conditional probability to be at a certain height incorporates a
wealth of detail. We have studied in particular the mean height and the
variance of height at some time after starting at an initial height. These
quantities exhibit curious behavior as functions of time and initial height.
We have also studied the probability to be above the mean equilibrium
height after some time. Perhaps the most striking feature is the behavior of
the Boltzmann entropy. We have shown that for sufficiently high initial
position the entropy at first steadily increases, and then decreases to its
equilibrium value.
We have not investigated the first passage-time distribution in any

detail. The distribution can be evaluated easily from the Laplace-transform
of the Smoluchowski equation by use of the formalism developed by
Darling and Siegert. (13) If the height of passage is below the initial height,
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then the first passage-time distribution is not affected by the presence of the
bottom wall, and is given by a simple expression. (5, 6) For height of passage
above the initial height the distribution is affected by the bottom wall.
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